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1.0 OBJECTIVES OF RESEARCH

The work performed under this grant, focused on the process of initiation and growth of shearbands in
frictional granules. Such localized deformations commonly occur in particulate media and are of considerable
engineering and scientific importance. They occur in a variety of areas of advanced materials processing, at different
scales. They are a common mode of failure in soil masses and geological formations.

A technique has been developed to study the deformation of lead-doped lines of granules within the sample
of a granular material, using the UCSD’s large hollow cylindrical cell, together with flash X-ray photography. The
special cell has been modified for this purpose, and several successful tests have been performed. The facilities are
then employed to develop in-depth fundamental understanding of the microstructure of a shearband zone, and the
spatial variation of the accompanying deformation. With this technique, we have captured the deformation that leads
to shearband formation in several preliminary experiments. We have successfully solidified the sample containing
shearbands, in situ. using a polymeric resin. We have then prepared sections for complete microstructural analysis,
and have performed some preliminary analysis of the results.

These and related issues are discussed in this report.

2.0 STATUS OF THE RESEARCH EFFORT
See Appendix A for research report: “Fundamental Study of Microstructure of Shearbands™
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(Fully or partially supported by AFOSR F49620-95-1-0173)

Nemat-Nasser, S. and N. Okada, “Residual Shear Strain Effect on Undrained Response of Saturated
Cohesionless Granules” in preparation.

Nemat-Nasser, S. and N. Okada, “Direct Observation of Deformation Through X-Ray Photographs” in

preparation.
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and Environmental Engineering, Santa Barbara, CA, May 24, 1995. '
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FUNDAMENTAL STUDY OF MICROSTRUCTURE OF SHEARBANDS

1. INTRODUCTION

The shear localization phenomenon is an important mode of failure in granular
media. The relation between the shearband orientation and the internal frictional, and
dilatancy angle, and the thickness of the shearband have been the subject of several
investigations; see Roscoe (1970), Scarpelli and Wood (1982), and Tatsuoka er al.
(1990). The theoretical approach has viewed this as a bifurcation phenomenon; see Des-
rues and Chambon (1989), Iwakuma and Nemat-Nasser (1982), Kolymbas and Rombach
(1989), Molenkamp (1985), Miihlhaus and Vardoulakis (1987), Rice and Rudnicki
(1980), Rudnicki and Rice (1975), Vardoulakis (1980, 1981), Vardoulakis and Graf
(1982, 1985), and Vardoulakis, Goldscheider, and Gudehus (1978). Although these
efforts have been useful, the microstructure of the shearband zone has not been clearly

identified, precluding a basic understanding of the physics of the phenomenon.

In this report, an X-ray technique and some preliminary experimental results on
direct observation of shearbands in sands, are presented. In these experiments, strings of
lead granules are embedded in a large hollow cylindrical specimen of granular materials,
and a series of X-ray photographs is taken to capture the micromechanical response dur-
ing the shear deformation of the sample. Both drained and undrained tests are performed.
Then, a technique developed for observing the microstructure of the sand particles within
the shearband zone is presented. In this experiment, a water-saturated sample containing
the shearbands, is frozen using dry ice. A frozen section of the sample containing shear-
band zone, is then cut from the frozen specimen and kept in a resin which can cure under
freezing temperatures. Then the sample is dried out in an oven, and another polymeric
resin is infiltrated into the voids of the sample. After curing, the sample is cut by a dia-

mond saw. The cut surface is polished for microscopic observations. This technique and
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the results of the X-ray photos, provide the necessary information to allow for the
development of micromechanically-based theoretical models for shearband formation

and growth in granular media.
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2. X-RAY TECHNIQUE

Radiography has been widely used to investigate the internal structure of materials
since the discovery of X-rays in 1895 by Roentgen. Radiography appears to be an impor-
tant, perhaps an indispensable tool for investigation of the behavior of particulate materi-
als. A number of investigators have applied this method to study various aspects of parti-
culates response: see Roscoe et al. (1963), Arthur er al. (1964), Kirkpatric and Belshaw
(1968), Scarpelli and Wood (1982), and Vardoulakis and Graf (1982). Notwithstanding
these investigations, the method has not been exploited to its full potential because of the
existence of several difficulties as discussed in the sequel. With new initiatives, further

development in this area is expected.

First, in a conventional triaxial apparatus, the sample is placed in a pressurized,
water-filled chamber. Therefore, the film must be placed outside the outer cell. The
resulting distance between the film and the lead shot in the sample reduces the resolution
of the radiographs. When the outer cell is removed and a vacuum is applied to produce

confining pressure, the volumetric strain cannot be measured during the test.

Second, when the specimen has a thick wall, it hinders the X-ray penetration, and the
resulting scattered radiation in the sample reduces the definition of the radiographs.
Therefore, relatively large-sized lead shot (compared with the size of the samples) must

be employed. This affects the material response and may lead to unreliable results.
2.1 Triaxial Torsional Apparatus

The specimen geometry used for the present investigation is a large hollow cylinder,
25cm high, with inner and outer diameters of 20cm and 25cm, respectively. This
geometry is chosen so that there is enough space inside the hollow cylindrical specimen
in order to place the film and related equipment inside the hollow cylinder, without any

interference with the sample deformation. Since the specimen is thin, easy X-ray
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penetration gives clear radiographs. The geometry of the sample is such that in torsion,
the shear stress remains (approximately) homogeneous throughout the thickness of the
specimen; see Hight et al. (1983) for a detailed examination of this and related issues.
The specimen is supported by a triaxial load frame; see Figure 1. The axial and torsional
deformations are controlled through an MTS servohydraulic loading system. In addition,
the specimen is subjected to lateral hydrostatic pressure, on both its inside and outside
cylindrical surfaces. In this manner, triaxial states of stress can be imposed on the

material under controlled conditions with complete data acquisition capability.

2.2 Lead Silicate Granules and Sample Preparation

Tribasic-lead-silicate granules provided by Hammon Lead Products, Inc. are used in
this study to trace their movements in the sand specimen by X-ray photography. Tribasic
lead silicate is used primarily by glass and frit manufacturers, and has high lead oxide
content: 92% of PbO and 8% of SiO,. The hardness of this material is nearly the same as
that of the sand particles. The specific gravity of this material is 7.510. The size distribu-
tion of lead silicate granules is adjusted so that it is the same as that of the sand used in
the experiment. In the 150 kV range of the X-ray, the absorption of lead is 14 times

greater than that of steel and more than 100 times greater than that of silica.

The particulate material is first prepared in wet form (5% water content). The verti-
cal and horizontal strings of lead silicate granules are embedded in the sample. In order
to embed the vertical strings, rectangular bars with 3.2mm (1/8") width are first placed at
the center of the specimen wall. The rodding method is used to prepare the sample. The
horizontal strings of lead silicate granules are also embedded at a certain heights in the
sample. After filling up the cylinder with particulates, the amount of overfilled material is

*cut’ away. Then, the rectangular bars are slowly removed from the wet particulates, and
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dry lead silicate granules are poured in to fill resulting rectangular holes.

2.3 Experimental Setup

Figure 2 shows the experimental setup. It is very important for obtaining a clear
image on the X-ray film to minimize the film-to-object distance. In order to do so, the X-
ray films are placed inside the hollow cylindrical sample, and the X-ray source is placed
45cm away from the films. Two lead foils, 1 mm thickness, are placed and spaced apart
in front of the film so that a limited area of film is exposed in each exposure; see also
Figure 3. The space between the two lead foils depends on the design of the experiment:
a wide space is needed for large deformations, and a narrow space is sufficient for small
deformations. Two lead plates, Smm thickness, are placed and spaced apart in front of
the specimen, so that the X-rays can penetrate only the space made by the two lead foils
placed in front of the film. The space made by the two lead plates having Smm thickness
is, therefore, slightly wider than the one made by the lead foils. A lead foil is also placed
behind the film in order to absorb the X-rays passing through the film and the plexiglass
tube to eliminate scattered X-rays. A hollow plastic box is placed between the specimen
and the cell in order to eliminate some water in front of the films. Since water absorbs
significant amounts of X-ray, it is replaced by air in a plastic box so that the X-rays can
penetrate the specimen more easily. This setup does not interfere with the water pressure

on the sample.

The films are attached on the outer surface of the plexiglass tube (outer diameter
18.4cm (7.25") and height 38.1cm (15")), and, then the plexiglass tube with film is
lapped with a rubber membrane and sealed at both ends by silicon grease and o-rings to
keep the films dry in the water-filled chamber. In Figure 3, the plastic plate placed in

front of the film has a lead position marker consisting of one vertical string and several
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horizontal strings spaced 1cm apart. These lead position markers will give the reference
position on each stage of the X-ray film for later analysis. Two lead foils, Imm thick-
ness, are placed and spaced apart in front of the films so that a limited area of film is

exposed in each exposure.

The plexiglass tube with films is placed on the teflon sheet attached on a ring-shaped
base in order to reduce the friction between the plexiglass tube and a ring-shaped base, as
shown in Figure 4. There are three spur gears on this ring-shaped base. They match the
internal gears placed on the lower part of the plexiglass tube, and hold the plexiglass tube

in place.

One of the spur gears is connected to the stepping motor which controls the position
of the films attached to the plexiglass tube in the chamber. The stepping motor used here
is a VEXTA Stepping Motor made by ORIENTAL MOTOR CO. LTD. The motor has
two control modes; the full-step mode is 200 steps per revolution (1.8 degree per step),
and the half-step mode is 400 steps per revolution (0.9 degree per step). The motor is
controlled by a CY545 Stepper System Controller made by CYBERNETIC MICRO
SYSTEM, INC, with an IBM-PC. The mode of the stepping motor, the number of steps,
the speed, and the direction of rotation can be controlled through the computer. The
entire unit is placed inside the hollow cylindrical specimen, and it is attached to the bot-
tom plate of the triaxial apparatus by screws, without affecting other aspects of the exper-

iments.

2.4 Flash X-Ray System, Film, and Fluorescent Screen

The Model 43731A Flash X-ray System made by Hewlett Packard is used for the X-
ray source. The tubehead is placed 45cm (1.5°) from the radiographic film, as shown in

Figure 2. This system provides a 70 nanosecond "burst" of 150 kV X-rays. Dose at 20
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cm/exposure is 40 mR. The effective source size is 3 mm.

The radiographic film used in this study is a Polaroid Instant Film Type TPX which
produces a positive image on a transparent 20cm x 25cm (8"x10") sheet. Type TPX film
consists of negatives (each in a light-tight envelope) and positive sheets (each with a pod
of processing chemicals attached). At the time of processing, the film must be loaded in a

Polaroid 8x10 Radiographic Film Cassette for processing in a Polaroid Film Processor.

A fluorescent intensifying screen is used to reduce exposure time. This screen has the
ability to absorb X-rays and immediately emit light. For the exposure, the film is attached
firmly to the fluorescent screen. The photographic effect on the film, then, is the sum of
the effects of the X-rays and of the light emitted by the screen. The required exposure is

1/50 of that without the fluorescent intensifying screen.

In order to attach the film to the surface of the plexiglass tube, the film cassette must
be flexible. Therefore, the negative film with the light-tight envelope is directly used as
the film cassette instead of loading it in a rigid film cassette provided by Polaroid. The
procedure is as follows. In total darkness, the fluorescent screen is inserted into the
envelope containing the film such that it attaches to the negative film in the envelope.
Then the envelope is closed. The envelope containing the film with the fluorescent screen
is flexible, and can be attached to the outer surface of the plexiglass tube. It is necessary
for a good image, to obtain firm contact between the negative and the fluorescent screen.
This contact is provided by the pressure in the experimental chamber, which is 392kN/m?

during the experiment.

The number of exposures depends on the film size and the space provided between
the lead foils. When the lead foils are spaced 4cm (1.6") apart, 5 exposures are possible
on an 8x10 film. It is possible to attach 2 films to the plexiglass tube. Therefore, a total of

10 exposures can be captured in this case, which is sufficient for our purposes.

10
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2.5 Experiment and Film Processing

The specimen is then water-saturated, using CO,-circulation and de-aired water cir-
culation techniques, with back pressure. The last step of specimen preparation is to
increase the effective pressure. Finally, the specimen is left undisturbed in this condition,

to consolidate isotropically.

After the specimen is consolidated, the experiment is started. The initial positions of
the lead silicate granules in the silica specimen define the reference configuration prior to
loading. First, the plexiglass tube is rotated by the computerized stepping motor to face
the unexposed film in line with the X-ray tubehead. Second, the specimen is deformed to

a desired configuration. Then, the radiograph is taken. This procedure is then continued.

After the experiment, the equipment is disassembled. The film is removed from the
plexiglass and loaded into the radiographic film cassette for processing. The envelope
and fluorescent screen are now removed from the radiographic film cassette with the film
remaining in the cassette. The film is finally processed by the Polaroid 8x10 radiographic

film processor.

2.6 Drained Test Results

Shear localization is an important mode of failure in granular media. The relation
between the angle and the thickness of a shearband and the internal frictional and dila-
tancy angles, and the thickness has been the subject of several investigators; see Roscoe
(1970), Vardoulakis (1980, 1981), Scarpelli and Wood (1982), Vardoulakis and Graf
(1982, 1985), Tatsuoka et al. (1990), and Saada et al. (1994). With the aid of the X-ray
technique presented in the preceding sections, the shear localization phenomenon in

granular media is examined in this section.

11
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Two types of sands, Silica No. 60 and Monterey No. 0, are used in this study in order
to examine the particle-size effect on shear localization. The particle size distribution
curves of both sands are shown in Figure 5. The mean particle diameters of Silica No. 60
and Monterey No. 0 are 220um and 480um, respectively. For Silica No. 60, the
minimum and maximum void ratios are 0.631 and 1.095, respectively. For Monterey No.
0, the minimum and maximum void ratios are 0.550 and 0.839, respectively. The specific

gravities of Silica No. 60 and Monterey No. 0 are 2.645 and 2.642, respectively.

The rodding method is used for making specimens, as described in Section 2.2. Two
vertical strings of lead silicate, approximately 2cm apart, and three borizontal lines of

lead silicate granules, spaced Scm apart, are embedded in the specimen.

The hollow cylindrical specimen is isotropically consolidated under 294kN/m? of
effective pressure. The simple shear experiments are performed under drained conditions.
The shear strain is controlled and is monotonically increased with a constant strain rate,
0.1%/min. The relation between the shear stress and shear strain, and the relation
between the shear strain and volumetric strain of Silica No. 60 are shown in Figures 6
and 7. The same relations in Monterey No. 0 sand are shown in Figures 8 and 9. It takes
approximately 3 minutes to take the X-ray photo in each stage. The shearing is, therefore,
temporarily stopped. This causes a certain stress relaxation, as seen in the stress-strain

relation of Figures 6 and 8.

Two films are attached on the plexiglass cylinder. The width of the window between
the lead foils is 4cm (1.6"). This allows 5 stages of deformation to be photographed on
each film. A total of 9 stages of deformation, 0% overall shear strain (the undeformed
stage), and 2%, 4%, 5%, 6%, 1%, 8%, 9%, and 10% overall shear strains are captured by

two X-ray films in one experiment.

12
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The radiographs for Silica No. 60 specimen are shown in Figure 10. Stage 1 is the
image of the undeformed specimen. It is seen that one vertical string and three horizon-
tal strings of lead silicate granules are captured by the radiograph. However, the second
vertical string, embedded 2cm to the left of the first string, is out of range in this stage
and, therefore, is not seen on it. As is seen, the position markers, placed just in front of
the film, are clearly captured on the radiographs. These position markers on the radio-
graph are used to analyze the movement of the lead strings. There are 2 numerals, 1 and
2, seen on the radiographs. These are the lead position markers indicating the 10cm and

20cm of height of the specimen, respectively.

Stage 2 is associated with 2% overall shear strain. It is seen that the first vertical
string of lead silicate granules has started to tilt. The second vertical string of lead silicate
granules is seen on the upper-left corner. Up to stage 3 associated with 4% overall shear

strain, the shear deformation appears uniform, and no shear localization can be detected.

Stage 5 corresponds to 5% overall shear strain. It is seen that the shear localization
has started on the upper portion of the figure. In stage 6, with the corresponding 7% shear
strain, the shear strain is localized in two different locations, at the top and in the middle.
In stage 9, with the corresponding 10% shear strain, shear localization is clearly

observed. The vertical strings are kinked at three different locations.

The radiographs for Monterey No. 0 specimen are shown in Figure 11. In stage 1, the
undeformed stage, two vertical strings and three horizontal strings of lead silicate
granules are clearly seen. Up to stage 3 associated with 4% overall shear stain, the shear
deformation appears uniform. However, after stage 4 associated with 5% overall shear
strain, the shear localization starts at a point between 12cm and 13cm of the specimen

height. In stage 7 with 8% strain, the shear localization is clearly seen.

13
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The displacements in each stage are measured from the X-ray photographs. For Mon-
terey No. 0, this is shown in Figure 12. It is seen that the deformations up to 4% overall
shear strain, are nearly homogeneous. However, at 5% overall shear strain, the shear
localization seems to start at between 12cm and 13cm of specimen height. It is clearly
seen in Figure 12 that the displacements after 6% shear strain, are accommodated by the
deformation of the shearband zone between 12cm and 13cm of specimen height, and the

remaining part of the specimen has a significantly small strain.

It is clearly seen from these two figures that the shearband in Monterey No. 0,
7.0mm, is wider than the one in Silica No. 60, 2.5mm. The mean particle diameters of
Monterey No. 0 and Silica No. 60 are 0.48mm and 0.22mm, respectively. Therefore, the
mean particle diameter affects the shearband width, which is approximately 10 to 15
times as large as the mean particle diameter. This is the same conclusion that has been
reached by Roscoe (1970), Scarpelli and Wood (1982), Vardoulakis and Graf (1985), and
Tatsuoka et al. (1990).

2.7 Undrained Test Results

Liquefaction is a phenomenon in which fluid-saturated granular media may momen-
tarily behave like fluids during earthquake. Damage resulting from liquefaction has been
observed in the aftermath of many earthquakes; the Niigata earthquake (1964), and the
Alaska earthquake (1964), and the Loma Prieta earthquake (1989) are a few examples.
More recently, the 1995 Kobe earthquake which killed more than 5,000 in Japan, causing
massive destruction by liquefaction in the coastal area of Kobe, especially in the man-

made Port Island where 3 meter settlement due to liquefaction has been reported.

Liquefaction has been experimentally treated by a number of researchers since the

Niigata earthquake (1964) and the Alaska earthquake (1964). Parameters influencing the

14
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onset of liquefaction of the sand such as overall density, initial packing conditions,
granule size distribution, and loading conditions have been extensively studied; see, for
example, Finn ez al. (1970), Seed (1979), Miura and Toki (1982), Tatsuoka ez al. (1982),
Ishihara and Towhata (1983), and Nemat-Nasser and Takahashi (1984). However, few
work has been conducted to directly observe the local deformation of water-saturated

particulate material during liquefaction.

In undrained tests, the specimen is isotropically consolidated under 196kN/m? of
effective pressure, where the back pressure is 196kN/m2. A cyclic shear stress is applied
under undrained conditions. Stress amplitudes of 39.3kN/m? is used with a period of 2
minutes per cycle. The relation between shear stress and mean effective pressure, and the

relation between shear stress and shear strain are shown in Figures 13 and 14.

A total of 6 stages of deformation including undeformed stage are captured by two
radiographs. The stages captured by radiographs are shown in Figure 13, and the images

of the radiographs are shown in Figure 15.

Stage 1 is the image of the undeformed specimen. It is seen that two vertical lines

and three horizontal lines of lead silicate granules are captured by X-ray.

Stage 2 corresponds to the overall shear strain -9.65% at peak shear stress 39.3kN/m?.
The specimen has lost a significant amount of effective pressure at this stage. This is later
recovered to 66.2kN/m?2 as the shear stress is increased. It is seen that the vertical line is
waving, but the shear localization is not observed in this stage, in spite of the large shear
deformation. Large strains occur in granular masses which are liquefied. It is well-known
that under the low confining pressure, the granular mass does not show clear shearbands

even after large deformations.

In Stage 3, the sample has been unloaded to zero shear stress, with the shear strain

remaining at -2.54%. Stage 4 corresponds to the overall shear strain of 5.68%. Stage 5

15
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corresponds to the overall shear strain of 9.89%, where the mean effective pressure is
28.0kN/m2. The deformation is relatively homogeneous, and the shear localization is not
observed in this stage. Stage 6 corresponds to the overall shear strain of 12.6%, where the
effective pressure is 56.2kN/m2. The shear localization is observed at this stage. This

shear localization is formed after the granular mass recovers its effective pressure.
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3. MICROSTRUCTURE OF SAND PARTICLES IN SHEARBAND
3.1 Shearband Solidifying Technique

In order to observe the microstructure of a shearband zone, the sand mass must be
solidified, once it has undergone large deformations. Oda (1972a, 1972b) has developed a
technique to solidify the granular mass in situ. The low-viscous resin was mixed with
sand before the test, and it cured in situ after the specimen had a large deformation. Then

thin sections were cut from this solidified sample for microscopic analysis.

In order to avoid the equipment to be ruined by resin, the water-saturated sample is
frozen by dry ice after the shear band appears in the sample. In this way, the sample can
be removed from the apparatus without any disturbances. The test procedure is the same
as described in Section 2. The large hollow cylindrical torsional apparatus is used. First,
the specimen is saturated with water. Then, the shearing is applied to the specimen under
the drained conditions. The X-ray photos are taken at each stage of deformation. After
the shearband appears on the specimen, the shearing is ceased and the residual shear
strain is held fixed. The confining pressure is reduced to 48kN/m2 and then the back pres-
sure is removed. After clamping the rod, the confining pressure is replaced by the
vacuum. The outside of the specimen is then covered by 25 Ib of dry ice which is rapped
in paper. The specimen freezes in about 1 hour. Finally, the frozen specimen is stored in

a freezer.

In order to observe the microstructure of the sand in the shearband, the ice in the
sample must be replaced by a polymeric resin. Hence, the shearband portion is cut from
the frozen sample, and is placed in a container which also contains glass beads, and has a
perforated bottom. Epon Resin 828 and Epi-Cure 3292-FX-60 Curing Agent which cure
at freezing temperatures is used to hold the sample. These compounds are carefully

mixed, the resulting resin is placed in the chamber, and then is subjected to vacuum for
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30 minutes in order to remove air bubbles from the mixed resin; this way, the cured resin
will be transparent. Then, the temperature of the resin is lowered just above its freezing
temperature, and it is poured into the container around the frozen sand specimen. It takes
about a week to cure the resin in the freezer whose temperature is kept between 22 to 28
OF. After curing, the container and the frozen sample is placed in 100 °F oven for two
days in order to remove water from the sand. At this point, a sample of sand which con-

tains a section of the shearband is in the container, firmly held by the surrounding resin.

To solidify the sands in the sample, Sikadur 55 SLV (provided by Sika) which has a
low viscosity, 95 cps, is now allowed to penetrate through the perforated bottom of the
container and through the glass beads, into the voids within the specimen. Once the
infiltration and curing is completed, the sample is cut by the diamond saw for micros-
copic observations. The microstructure is clearly observed in an optiéal microscope if
the surface of the sample is well-polished. This reduces the effort to cut thin sections
from the sample. We will however, examine both thin and thick sections of the sample

in our future studies.

3.2 Microstructure of Sand Particles in Shearband

The initial sand sample is prepared by the rodding method. The strings of lead sili-
cate granular are embedded in the sample. After saturating the sample with water, the
sample is isotropically consolidated under 196kN/m? of effective pressure. Simple shear
experiments are performed on the sample under drained conditions. The shear strain is
controlled and is monotonically increased with a constant strain rate, 0.1%/min. The
relation between the shear stress and shear strain, and the relation between the shear
strain and volumetric strain are shown in Figures 16 and 17. The shearing is continued up

to 10% of shear strain.
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The X-ray photos are taken every 2% shear strain, namely at 0%, 2%, 4%, 6%, 8%,
and 10% shear strain. The series of radiographs are shown in Figure 18. Although the
shearband is not very clearly observed in this portion of the sample where the strings of

lead granules are embedded, the shear localization is seen in Figure 18.

After the shearing, the triaxial apparatus is removed from MTS load frame, where
the sample is subjected to 48kN/m? of vacuum. The shearband appearing on the sample
is shown in Figure 19. After freezing the sample, a portion of the sample containing a
shearband zone is cut out from the frozen sample. This is shown in the middle of Figure
19. The frozen portion is then kept in a resin within a container with perforated bottom.
After processing the sample as described in Section 3.1, the solidified sample containing
a shearband is obtained for microstructural analysis. Figure 20 shows the microstructure
of the shearband at 100 magnification. This microstructure will be quantified using image
processing, and the results will be compared with those corresponding to the regions out-
side of the shearband. We expect that this study will provide important fundamental
information relating to the shear localization in granular materials. This technique and
the results of the X-ray photos, can provide excellent information for developing

micromechanically-based theoretical models for shearbanding in granular media.
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Figure 3. Plexiglass tube with attached film and lapped membrane, placed inside
the hollow cylindrical specimen
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Figure 19. Shearband on specimen
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Figure 20. Microstructure of sand particles in shearband zone
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